B.Sc. 1st Semester (Hons) Examination,

November-2014

PHYSICS

Paper-Phy-106

Linear Digital Integrated Circuits and Instrumentation—I

Time allowed: 3 hours] [Maximum marks: 40]

Note: Attempt five questions in all, selecting at least two questions from each unit.

Unit-I

- List the difference between thick and thin film IC's. (a) Differentiate between Linear Integrated circuits (b) and Digital Integrated circuits. What is an OP-AMP? Draw and explain the block 2. (a) 4 diagram of OP-AMP. Why are open loop OP-AMP configurations not (b) used in linear applications? Write four characteristics of OP-AMP (ideal). 2 (c) Calculate the output voltage of a OP-AMP summer (a) 3. for the following set of input voltages and resistors $V_1 = 1$ volt, $V_2 = 2$ volt, $V_3 = 3$ volt
 - $R_1 = 500 \text{ k}\Omega$, $R_2 = 1M\Omega$, $R_3 = 1M\Omega$ and $R_F = 1M\Omega$
 - (b) Write a note on zero crossing detetor. 4

4.	(a)	What is the difference between an oscillator and multivibrator? Draw the circuit of bistable multivibrator and find the expression for collector swing of one transistor used in the multivibrator.
1-0	(b)	How can a operational amplifier be used as a comparator?
GR)	iznal	or service the Unit-II and the Control of the Control
5.	(a)	How the decimal fraction numbers are converted to binary numbers? Explain.
	(b)	Convert hexadecimal number 2 BAFC to binary and then to octal.
	(c)	What do you understand by floating point representation of binary numbers?
6.	(a)	What is the difference between the ordinary algebra and Boolean algebra?
	(b)	Explain how AND, OR, NOT gates can be realized using NOR gates alone.
	(c)	Draw a truth table of a Boolean function $F = \overline{A} \cdot B + C$.
7.	(a)	What is memory unit? Explain with block diagram the concept of memory using registers connected to memory unit.
	(b)	Explain the working of Encoder with a neat and clean diagram.

8. (a)	Implement a half Adder circuit using NAND gate	
	only.	

- (b) Draw the diagram of a full subtractor and explain its working.
- (c) Obtain 2's complement of 16 bit binary number 0111100011001100 by two methods. 2